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We have studied the cooling-rate dependence of approaching the ground state in several spin
glass models within the microcanonical simulated annealing scheme. The final state energies of the
two-dimensional (2D) and 3D Gaussian models and the 3D +J model were found to depend on the
cooling rate AE/7, where AFE is the energy decrement in the microcanonical simulation and 7 is
the number of Monte Carlo steps per spin at each annealing stage. In particular the ground-state
energy dependence on 7 for all models studied shows a stretched exponential form for a wide range
of the values 7. This behavior is very different from that of the conventional simulated annealing

algorithms.

PACS number(s): 64.60.Cn, 75.10.Hk, 75.50.Kj, 05.50.+q

I. INTRODUCTION

Much progress has been achieved in recent years in
understanding the behavior of complex systems that in-
volve many parameters and conflicting constraints [1]. A
central question of these problems is the search for the
ground state where a measurable quantity obtains an ex-
tremal value. For example, in the traveling salesman
problem one wishes to find the shortest path that con-
nects all the nodes; while in the spin glass models one
needs to compute the ground-state energy. A powerful
tool for searching for the ground state was proposed in a
classic paper by Kirkpatrick, Gelatt, and Vecchi in 1983
where the stochastic model of simulated annealing was
introduced [2]. In this approach a cost function is con-
structed to characterize the optimization process. A con-
trolled thermal treatment followed by slow cooling gives
the system the chance to jump out of local minima of the
cost function, thereby improving the capability of finding
the global minimum.

The idea of simulated annealing is most commonly
combined with the conventional Metropolis Monte Carlo
simulation. For example, to compute the ground-state
energy of a spin glass model, one starts at a high temper-
ature T and anneals down to T' = 0 in small steps AT.
At each stage of the annealing schedule a prespecified
number of Monte Carlo steps 7, which measures a time,
are completed before the temperature is lowered further.
Obviously one wishes to use the largest possible AT and
smallest possible 7 to achieve an accurate answer. How-
ever, as expected, the minimum energy found for spin
glass models depends on the cooling rate r = AT/7.
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In particular [3] for two-dimensional (2D) models this
dependence is a power law, while for 3D models it is in-
versely logarithmic. While the reason for these particular
kinds of time dependence were not clear, the difference
in the time dependence between the 2D and 3D models
is believed to be related to the fact that 3D models are
NP complete while the 2D models are not. These find-
ings provide useful guidelines for the design of optimal
annealing schedules for other applications. (NP refers to
a category of problems that are believed to be insoluble
by algorithms whose run time grows as a polynomial in
the size of the problem.)

It is also possible to perform simulated annealing in
other statistical ensembles. Although formulations of
equilibrium statistical mechanics using different ensem-
bles are equivalent, the dynamics of the algorithms based
on these ensembles can be different. Thus it is possible
to exploit different ensembles for optimal dynamical per-
formance of a simulation. For example, multicanonical
ensemble simulated annealing [4, 5] was recently applied
successfully to compute ground-state properties of a re-
alistic protein. In a previous work we have explored sim-
ulated annealing within the microcanonical ensemble [6]
and found that this scheme can be advantageous for cer-
tain applications.

In this paper we present a detailed numerical study of
the cooling rate dependence of ground-state energies of
two- and three-dimensional Ising spin glass models, us-
ing microcanonical simulated annealing. Similar to what
is found in the more conventional Metropolis simulation
[3], we also find a dependence of the final energy on the
cooling rate. However, the 7 dependence of the approach

1982 ©1996 The American Physical Society



53 BRIEF REPORTS 1983

to the final state (which may or may not be the global
minimum energy state) fits very well with a stretched
exponential in all cases studied, from the initial time to
some late time where the system energy compares well
with that of the known values of the ground states. This
behavior is very different from the conventional simu-
lated annealing algorithms. Although there is a long tail
in the stretched exponential decay (see below) that prob-
ably will alter the overall time dependence at very large
times, for all practical purposes we believe that this algo-
rithm has a “better” dependence on the annealing time
as far as the approach to ground-state spin configuration
is concerned. This is because a stretched exponential is a
faster decaying function than a power law, or the inverse
logarithmic dependence found in the canonical ensemble
simulated annealing in the time regime of a typical sim-
ulation. In the next section a brief review of the micro-
canonical ensemble simulated annealing method is given.
Section III presents results of our work. Section IV con-
tains a short summary.

II. METHOD

A detailed discussion of the microcanonical ensemble
simulated annealing used here can be found in Ref. [6],
but for completeness we briefly review it [7]. Consider the
nearest-neighbor Ising model described by the Hamilto-
nian

H = =) Ji;5:S;, (1)
i#£j

where the sum is over all nearest neighbors, J;; is the
exchange interaction strength between spins at site ¢ and
Jj, and S; = %1 is the spin at site i. Two popular Ising
spin glass models are for J;; to take random values from a
Gaussian distribution (Gaussian model), or to take values
of £J with equal probability (the +J model). When
Ji; = J we recover the usual ferromagnetic Ising model.

The microcanonical Monte Carlo simulation we will
use below was first proposed by Creutz [8] to study the
Ising model and has subsequently been applied to a va-
riety of physical systems [9]. To study the equilibrium
properties of an Ising model described by (1), a micro-
canonical ensemble is constructed by letting a demon
with energy F, interact with the spins such that the total
energy E = FEiging + E4 is conserved. In a Monte Carlo
simulation step, the energy required to flip a spin, §E,
is compared with E4. If E4 > §FE, the flip is permitted
and an amount J F is subtracted from F;. Otherwise the
Monte Carlo trial is abandoned. In this algorithm tem-
perature is actually a derived quantity obtained from the
fluctuation of the demon energy [8]. This allows large lo-
cal temperature fluctuations that are essential for models
with frustration to bring the system out of its metastable
states [6].

The above microcanonical Monte Carlo method is gen-
eralized for simulated annealing as the following [6, 7].
The spin system is initialized in the high-temperature
phase and allowed to interact with the demon. An an-
nealing schedule is defined as several stages of a Monte
Carlo run, say M stages, each consisting of 7 Monte Carlo
trials per spin. Thus the total number of Monte Carlo
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FIG. 1. A typical annealing run of system energy for the

2D Gaussian model as a function of Monte Carlo time, with
M = 16 and 7 = 400. Solid line: Metropolis algorithm;
dotted line: Microcanonical algorithm. The unit of energy is
éJ, that of time is Monte Carlo trial per spin. System size is
100 x 100 spins.

trials per spin, which is a measure of the total time of the
simulation, is ¢t = M7. At each stage of the annealing
schedule, a maximum value of the demon energy, EF?*,
is specified such that if the demon energy Eq > EJ**, Ey4
is reset to EF**. In this work we always started with a
high EJ'®* at the first stage, and reduced it to zero in M
stages with equal decrement. This procedure efficiently
takes energy out of the spin system via the demon, and
brings the system to lower and lower energy states.

In a previous work [6], some comparisons of the per-
formance between the microcanonical simulated anneal-
ing and the conventional Metropolis algorithm were pre-
sented. Figure 1 shows a comparison of the two algo-
rithms in a typical annealing run using the 2D Gaussian
model, for given M = 16 and 7 = 400 steps. It is clear
that at the end of the run, i.e., time t = M7 = 6400
where T' = 0 for the Metropolis simulation and EJ** =~ 0
for the microcanonical simulation, both algorithms pro-
duce ground-state energies very close to each other, and
in this case quite close to the known value as well. How-
ever, it is also clear that the actual ground-state spin
configuration is approached more quickly by the micro-
canonical algorithm as the shown by the figure. Namely,
before the final annealing stage is reached, spin config-
urations generated by the microcanonical algorithm are
closer to that of the true ground state than those of the
Metropolis simulation. The main purpose of this work is
to examine the actual 7 and M dependence of the final
system energy in the microcanonical algorithm. Obvi-
ously we expect that larger values of M and 7 will lead
to lower final system energy.

III. RESULTS
The short-range Ising spin glass described by (1) has
been extensively investigated by many authors [10]. For
the Gaussian model, transfer matrix calculations [11] give
the ground-state energies: Fo/6J =~ —1.31+0.01 for 2D;
and Ey/0J =~ —1.70+ 0.03 for 3D; where §J is the width
of the Gaussian distribution for {J;;}. For the 3D+J
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TABLE 1. Ground-state energies for different cooling
rates of the two-dimensional (2D) Gaussian model. The unit
of energy is 6J, which is the width of the Gaussian distribution
for the bond strength {J;;}. M is the number of annealing
stages and 7 is the number of Monte Carlo steps per annealing
stage. The initial demon energy is Eq = 8.

Energy

T M=4 M=8 M=12 M=14
1 -1.0152 -1.1483 -1.1875 -1.1981

-1.2003 -1.2407 -1.2519 -1.2550
10 -1.2295 -1.2550 -1.2631 -1.2655
20 -1.2480 -1.2659 -1.2719 -1.2741
30 -1.2564 -1.2710 -1.2763 -1.2777
40 -1.2611 -1.2759 -1.2793 -1.2803
50 -1.2646 -1.2771 -1.2811 -1.2822
80 -1.2711 -1.2810 -1.2847 -1.2857
100 -1.2741 -1.2823 -1.2862 -1.2873
200 -1.2807 -1.2877 -1.2905 -1.2912
400 -1.2857 -1.2917 -1.2938 -1.2940
600 -1.2885 -1.2935 -1.2958 -1.2958
800 -1.2901 -1.2948 -1.2965 -1.2965
1600 -1.2940 -1.2977 -1.2984 -1.2989
2000 -1.2941 -1.2985 -1.2993 -1.3000

model, the transfer matrix [11] gives Eo/J ~ —1.76 +

0.02. We take these values as a benchmark with which
to compare our simulated annealing calculations.

In 2D, we study square lattices with 100 x 100 spins.
In 3D, cubic lattices of 203 spins were used. The initial
demon energy is arbitrarily set at £y = 8 in dimensionless
units, which was also the EJ** for the first annealing
stage, and the spins are initially disordered. Then we
cool down the system by reducing EJ** to zero in equal
decrement in M stages, as described in the last section.
Various values of M are used, and usually we set M to
4, 8, 12, or 14. At each of the M stages, a number of T
Monte Carlo steps are run per spin. We used 7 ranging

TABLE II. Ground-state energies for different cooling
rates for the three-dimensional (3D) Gaussian and 4+J models.
The unit of energy is §J or J for the Gaussian and +.J mod-
els, respectively. M is the number of annealing stages, and T
is the number of Monte Carlo steps per annealing stage. The
initial demon energy is E4 = 8.

Gaussian model +J model
T M=8 M=12 M=8 M=12
1 -1.4944 -1.5393 -1.5884 -1.6449
5 -1.6111 -1.6238 -1.7273 -1.7371
10 -1.6292 -1.6389 -1.7421 -1.7474
20 -1.6443 -1.6503 -1.7508 -1.7538
30 -1.6497 -1.6550 -1.7541 -1.7568
40 -1.6540 -1.6580 -1.7565 -1.7585
50 -1.6567 -1.6608 -1.7583 -1.7601
80 -1.6617 -1.6650 -1.7615 -1.7615
100 -1.6635 -1.6666 -1.7625 -1.7642
200 -1.6688 -1.6726 -1.7666 -1.7670
400 -1.6719 -1.6742 -1.7688 -1.7691
800 -1.6755 -1.6772 -1.7713 -1.7715
1200 -1.6766 -1.6782 -1.7722 -1.7723
1600 -1.6775 -1.6797 -1.7730 -1.7730
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FIG. 2. Final system energy for the 2D Gaussian model

as a function of 7, which is the number of Monte Carlo steps
per spin at each annealing stage, for M = 14. Filled squares
are the simulation data and the solid line is the fit to the
stretched exponential form, Eq. (2). The unit of energy is
éJ.

from 1 to 2000. Finally, for each set of parameters, at
least 500 independent bond configurations are averaged
to obtain good statistics.

Similarly, to the results reported in Ref. [3], the final
system energy E sensitively depends on the values of 7
when 7 is small. However, for reasonably large values of
7, E is only weakly dependent on this parameter. This
was also observed in our earlier work [6]. Tables I and II
summarize the 7 dependence of E for the three models
studied here. In all cases the lowest energy, which comes
from the largest M and 7, compares well with the trans-
fer matrix results quoted above [6]. The exception is the
3D+J model, where our result is lower than (though
within error bars of) the exact recursive calculation based
on small systems [10]. However, this is a known situation
which was found in a number of previous calculations [3,
6].

The main results of this work are the 7 dependence.
Figure 2 shows the final system energy for different 7’s,
i.e., E = E(7) for a value of the annealing stage M = 14
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FIG. 3. Final system energy for the 3D models as a func-

tion of 7 with M = 12. (a) Filled squares: Gaussian model;
(b) open squares:' =J model. The solid lines are the fit by
Eq. (2). The unit of energy is §.J.
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for the 2D Gaussian model (filled squares). It is evident
that F varies with 7 with a very sharp drop at small
values of 7, followed by a very long and slow decaying
tail. This is also seen in Table I. We find that the whole
data range, for all the M values we have used (Table I),
can be well fitted by a stretched exponential form,

E(r) = Bo+ Ae™(D (2)

where Ey, A, €, and « are constants. Since our lowest
energy is very close to that of the transfer matrix result,
we have fixed Fy to that value in all fits. The solid line of
Fig. 2 is the stretched exponential form (2). For all the
M’s, we found that the time constant ¢ ~ 1, while the
stretching exponent v =~ 0.2. This form of the energy re-
laxation is very different from that of Ref. [3], where the
conventional Metropolis Monte Carlo method was used
in the simulated annealing and a power-law dependence
on 7 was found. Since a stretched exponential decay is
faster than a power-law decay in general, and the lowest
energy is indeed very close to that of the known ground-
state value, the microcanonical simulated annealing is
apparently more efficient than that of the conventional
method for the 2D Gaussian model in bringing the spin
configuration to that of the true ground state.

It is surprising that our data for the 3D models can
also be fitted to the form of (2) for the range of 7 that
we have used. Figure 3 shows this fitting for the 3D
Gaussian (solid squares) and +J (open squares) models.
Again, the shape of the curves is similar to the 2D Gaus-
sian model case in that there is a sharp drop of the final
energy followed by a long slow decaying tail. For the
two 3D models, and for different annealing stages M, we
found the time constant € ~ 1, and the stretching expo-
nent v = 0.1. Although the exponent ~ is very small, this
form of 7 dependence is very different from that of the
conventional simulated annealing [3] where E was found
to decay as (In7)~!. We caution that while the fitting
to a stretched exponential form is reasonable up to the
largest 7 we have tried, the data do possess a very long
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decaying tail, as seen in Fig. 3. We believe that at even
larger 7, the dependence will change from the stretched
exponential to something much slower (already signaled
by the slow tail). Otherwise the NP-complete problem
would be solved in a time, which scales in N equal to or
even faster than a power law, thus producing an incon-
sistency. However, for all practical purposes we obtain
final energies quite close to the known ground-state val-
ues using the range of 7 shown here. Thus we may take
the form (2) as an “operational” formula that describes
the 7 dependence of the present algorithm.

IV. SUMMARY

We have studied the cooling-rate dependence of the
approaching ground state for several spin glass models
within the microcanonical ensemble simulated annealing
scheme. For all models we obtain very good ground-state
energies in comparison with the exact recursive calcula-
tion on finite systems, and with previous simulations.
It is interesting that the final energy dependence on 7,
which is the number of Monte Carlo steps at each stage
of annealing schedule, can be fitted by a stretched ex-
ponential. This is true at least for the range of 7 that
we have used and that gives reasonable ground-state en-
ergies. For the 3D models we believe that the 7 depen-
dence will likely change if data for exceedingly large
are included. But that is beyond our computation capa-
bility and is not necessary for practical purposes as very
good ground-state energies have already been obtained
using smaller 7. Thus for the range of 7 we have stud-
ied, the stretched exponential effectively describes the
cooling-rate dependence of the present simulated anneal-
ing algorithm within the microcanonical scheme.
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